Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Diabetol Metab Syndr ; 15(1): 81, 2023 Apr 25.
Article in English | MEDLINE | ID: covidwho-2298877

ABSTRACT

BACKGROUND: Glycemic monitoring has become critical during the COVID-19 pandemic because of poor prognosis in diabetes. Vaccines were key in reducing the spread of infection and disease severity but data were lacking on effects on blood sugar levels. The aim of the current study was to investigate the impact of COVID-19 vaccination on glycemic control. METHODS: We performed a retrospective study of 455 consecutive patients with diabetes who completed two doses of COVID-19 vaccination and attended a single medical center. Laboratory measurements of metabolic values were assessed before and after vaccination, while the type of vaccine and administrated anti-diabetes drugs were analyzed to find independent risks associated with elevated glycemic levels. RESULTS: One hundred and fifty-nine subjects received ChAdOx1 (ChAd) vaccines, 229 received Moderna vaccines, and 67 received Pfizer-BioNtech (BNT) vaccines. The average HbA1c was raised in the BNT group from 7.09 to 7.34% (P = 0.012) and non-significantly raised in ChAd (7.13 to 7.18%, P = 0.279) and Moderna (7.19 to 7.27%, P = 0.196) groups. Both Moderna and BNT groups had around 60% of patients with elevated HbA1c following two doses of COVID-19 vaccination, and the ChAd group had only 49%. Under logistic regression modeling, the Moderna vaccine was found to independently predict the elevation of HbA1c (Odds ratio 1.737, 95% Confidence interval 1.12-2.693, P = 0.014), and sodium-glucose co-transporter 2 inhibitor (SGLT2i) was negatively associated with elevated HbA1c (OR 0.535, 95% CI 0.309-0.927, P = 0.026). CONCLUSIONS: Patients with diabetes might have mild glycemic perturbations following two doses of COVID-19 vaccines, particularly with mRNA vaccines. SGLT2i showed some protective effect on glycemic stability. Hesitancy in having vaccinations should not be indicated for diabetic patients with respect to manageable glycemic change. TRIAL REGISTRATION: Not applicable.

2.
Biomedicines ; 10(10)2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2082227

ABSTRACT

The present study aimed to analyse the published data and to realize an update about the use and pathogenesis of the novel antidiabetic drugs, respectively, dipeptidyl peptidase-4 inhibitors (DPP-4i), glucagon-like peptide-1 receptor agonists (GLP-1 Ra), and sodium-glucose co-transporter-2 inhibitors (SGLT-2i), in patients with type 2 diabetes mellitus (T2DM) and coronavirus disease (COVID-19). Literature research in the PubMed and Web of Science database was performed in order to identify relevant published clinical trials and meta-analyses that include information about the treatment with novel antidiabetic agents in patients with T2DM and COVID-19. A total of seven articles were included, and their primary and secondary outcomes were reported and analysed. DPP-4i has mixed results on mortality in T2DM patients with COVID-19 but with an overall slightly favourable or neutral effect, whereas GLP-1 Ra seems to have a rather beneficial impact, while SGLT-2i may be useful in acute illness. Even if there are limited data, they seem to have favourable efficacy and safety profiles. The available evidence is heterogenous and insufficient to evaluate if the benefits of non-insulin novel antidiabetic drugs in COVID-19 treatment are due to the improvement of glycaemic control or to their intrinsic anti-inflammatory effects but highlights their beneficial effects in the pathogenesis and evolution of the disease.

3.
J Clin Med ; 11(6)2022 Mar 08.
Article in English | MEDLINE | ID: covidwho-1760675

ABSTRACT

The incidence of both diabetes mellitus type 2 and heart failure is rapidly growing, and the diseases often coexist. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are a new antidiabetic drug class that mediates epithelial glucose transport at the renal proximal tubules, inhibiting glucose absorption-resulting in glycosuria-and therefore improving glycemic control. Recent trials have proven that SGLT2i also improve cardiovascular and renal outcomes, including reduced cardiovascular mortality and fewer hospitalizations for heart failure. Reduced preload and afterload, improved vascular function, and changes in tissue sodium and calcium handling may also play a role. The expected paradigm shift in treatment strategies was reflected in the most recent 2021 guidelines published by the European Society of Cardiology, recommending dapagliflozin and empagliflozin as first-line treatment for heart failure patients with reduced ejection fraction. Moreover, the recent results of the EMPEROR-Preserved trial regarding empagliflozin give us hope that there is finally an effective treatment for patients with heart failure with preserved ejection fraction. This review aims to assess the efficacy and safety of these new anti-glycemic oral agents in the management of diabetic and heart failure patients.

4.
Curr Med Res Opin ; 38(3): 357-364, 2022 03.
Article in English | MEDLINE | ID: covidwho-1612282

ABSTRACT

Sodium-glucose co-transporter-2 (SGLT-2) inhibitors are antidiabetic drugs with numerous pleiotropic and positive clinical effects, particularly regarding a reno-cardiovascular protective effect. More recent studies, including from our laboratory, have highlighted some novel anti-inflammatory activity of SGLT-2 inhibitors. This may confer a theoretical advantage in mitigating excessive cytokine production and inflammatory response associated with serious COVID-19 infection. Specifically, earlier research has demonstrated that SGLT-2 inhibitors are associated with a notable decrease in inflammatory indicators, for example, C-reactive protein, ferritin, and interleukin-6. Furthermore, SGLT-2 inhibitors exhibit a favourable impact on the vascular endothelium function; this could pertinence the prophylaxis of the thrombotic issues that arise in SARS-CoV-2. This review provides an overview of the COVID-19 indirect immune response mechanisms impacting the cardiovascular system and the possible effect of SGLT-2 inhibitors on the management of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Inflammation , Sodium-Glucose Transporter 2 Inhibitors , Glucose , Humans , Hypoglycemic Agents/therapeutic use , Inflammation/drug therapy , Inflammation/virology , SARS-CoV-2 , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
6.
Diabetes Ther ; 12(12): 3037-3054, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1482312

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). The latter is a pandemic that has the potential of developing into a severe illness manifesting as systemic inflammatory response syndrome, acute respiratory distress syndrome, multi-organ involvement and shock. In addition, advanced age and male sex and certain underlying health conditions, like type 2 diabetes mellitus (T2DM), predispose to a higher risk of greater COVID-19 severity and mortality. This calls for an urgent identification of antidiabetic agents associated with more favourable COVID-19 outcomes among patients with T2DM, as well as recognition of their potential underlying mechanisms. It is crucial that individuals with T2DM be kept under very stringent glycaemic control in order to avoid developing various cardiovascular, renal and metabolic complications associated with more severe forms of COVID-19 that lead to increased mortality. The use of novel antidiabetic agents dipeptidyl peptidase 4 inhibitors (DPP4i), sodium-glucose co-transporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP-1RAs) in subjects with T2DM may have beneficial effects on COVID-19 outcomes. However, relevant studies either show inconsistent results (DPP4i) or are still too few (SGLT2i and GLP-1RAs). Further research is therefore needed to assess the impact of these agents on COVID-19 outcomes.

7.
Pulm Pharmacol Ther ; 69: 102035, 2021 08.
Article in English | MEDLINE | ID: covidwho-1209037

ABSTRACT

The novel coronavirus 2019 (COVID-19) infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global pandemic that requires a multi-faceted approach to tackle this unprecedent health crisis. Therapeutics to treat COVID-19 are an integral part of any such management strategy and there is a substantial unmet need for treatments for individuals most at risk of severe disease. This perspective review provides rationale of a combined therapeutic regimen of selective endothelin-A (ET-A) receptor antagonism and sodium glucose co-transporter-2 (SGLT-2) inhibition to treat COVID-19. Endothelin is a potent vasoconstrictor with pro-inflammatory and atherosclerotic effects. It is upregulated in a number of conditions including acute respiratory distress syndrome and cardiovascular disease. Endothelin mediates vasocontractility via endothelin (ET-A and ET-B) receptors on vascular smooth muscle cells (VSMCs). ET-B receptors regulate endothelin clearance and are present on endothelial cells, where in contrast to their role on VSMCs, mediate vasodilation. Therefore, selective endothelin-A (ET-A) receptor inhibition is likely the optimal approach to attenuate the injurious effects of endothelin and may reduce ventilation-perfusion mismatch and pulmonary inflammation, whilst improving pulmonary haemodynamics and oxygenation. SGLT-2 inhibition may dampen inflammatory cytokines, reduce hyperglycaemia if present, improve endothelial function, cardiovascular haemodynamics and cellular bioenergetics. This combination therapeutic approach may therefore have beneficial effects to mitigate both the pulmonary, metabolic and cardiorenal manifestations of COVID-19. Given these drug classes include medicines licensed to treat heart failure, diabetes and pulmonary hypertension respectively, information regarding their safety profile is established. Randomised controlled clinical trials are the best way to determine efficacy and safety of these medicines in COVID-19.


Subject(s)
COVID-19 , Endothelin Receptor Antagonists , Endothelial Cells/metabolism , Endothelin-1/metabolism , Endothelins , Glucose , Humans , SARS-CoV-2 , Sodium , Sodium-Glucose Transporter 2
8.
J Diabetes Complications ; 34(12): 107723, 2020 12.
Article in English | MEDLINE | ID: covidwho-731824

ABSTRACT

Inflammation is implicated in the development and severity of the coronavirus disease 2019 (COVID-19), as well as in the pathophysiology of diabetes. Diabetes, especially when uncontrolled, is also recognized as an important risk factor for COVID-19 morbidity and mortality. Furthermore, certain inflammatory markers [i.e. C-reactive protein (CRP), interleukin-6 (IL-6) and ferritin] were reported as strong predictors of worse outcomes in COVID-19 positive patients. The same biomarkers have been associated with poor glycemic control. Therefore, achieving euglycemia in patients with diabetes is even more important in the era of the COVID-19 pandemic. Based on the above, it is clinically interesting to elucidate whether antidiabetic drugs may reduce inflammation, thus possibly minimizing the risk for COVID-19 development and severity. The present narrative review discusses the potential anti-inflammatory properties of certain antidiabetic drugs (i.e. metformin, pioglitazone, sitagliptin, linagliptin, vildagliptin, alogliptin, saxagliptin, liraglutide, dulaglutide, exenatide, lixisenatide, semaglutide, empagliflozin, dapagliflozin, canagliflozin), with a focus on CRP, IL-6 and ferritin.


Subject(s)
COVID-19/epidemiology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Hypoglycemic Agents/therapeutic use , Inflammation/prevention & control , SARS-CoV-2 , Anti-Inflammatory Agents , COVID-19/physiopathology , COVID-19/prevention & control , Comorbidity , Diabetes Mellitus, Type 2/physiopathology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Humans , Metformin/therapeutic use , Pioglitazone/therapeutic use , Risk Factors , Sitagliptin Phosphate/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL